
3. Fluid Mech. (1978), vol. 84, part 4, pp .  717-741 

Printed in Great Britain 
717 

The wave system attached to a finite slender body 
in a supersonic relaxing gas stream 
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(Received 9 May 1977) 

The results of a companion paper are extended to encompass the flow about smooth, 
but otherwise general body shapes. The wave behaviour depends on three important 
parameters, namely the body thickness ratio c, the quantity 8, which is proportional to 
the difference between the frozen and equilibrium sound speeds, and the ratio h of a 
relaxation time to a characteristic flow time. Both analytical and numerical solutions 
have been obtained; account is taken of nonlinearity for complete spectra of the three 
parameters, enabling an assessment to be made of the evolution of the wave forms for 
a host of situations. In  particular, it  is possible to predict the structures of the shock 
waves in various regions, and it transpires that under certain conditions vibrational 
relaxation can overwhelm other dissipative effects. 

1. Introduction 
An aircraft moving supersonically produces a complicated shock pattern, and far 

from the aircraft these waves become dominated by the head and tail shocks. A theory 
based solely on transport phenomena indicates that the fine-structures of the shocks 
correspond to the classical, Taylor, one-dimensional profile (Lighthill 1956, p. 287) 
superimposed on the discontinuous field, and the thicknesses of the shocks normally 
remain small except at  very large distances (Chong & Sirovich 1973). However, field 
measurements have divulged shock thicknesses much greater than those expected on 
this basis (Lilley 1965; Pierce & Maglieri 1972), and the present study aims to clarify 
this problem by formally solving the axisymmetric configuration. 

It is well known that non-equilibrium phenomena can have significant effects on the 
propagation of waves through a gas (see, for example, Clarke & McChesney 1976). The 
probable relevance of relaxation effects to the sonic boom (Hodgson & Johannesen 
1971; Hodgson 1973) constitutes one reason for re-opening the question of wave 
propagation through a relaxing gas; the present theory encompasses both chemical 
and thermal non-equilibrium, but this paper is aimed primarily at  wave propagation 
through atmospheric air, where the vibrational relaxation of diatomic molecules is the 
pertinent process. A variety of configurations, both linear and nonlinear, have been 
studied analytically in the past (e.g. Lighthill 1956; Lick 1967; Clarke & McChesney 
1976; representative Russian work may be found in the papers by Kraiko 1966; 
Ryzhov 1971; Rudenko, Soluyan & Khokhlov 1974; Tkalenko 1975); although some 
early work exists on the linear theory of axially symmetric flow, with one exception 
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(Clarke & Sinai 1977) there has been no attempt to date to analyse the nonlinear ft 
field of such a flow. Numerical and semi-empirical techniques (e.g. Stephenson 196( 
Sedney & Gerber 1963) are of course useful, particularly when disturbances are largc 
but closed-form solutions, if attainable, are more desirable. In  a companion papei 
Clarke & Sinai (1977, hereafter referred to as I) presented results for the general linea 
theory in regions where its predictions begin to break down, and went ahead to analys 
the nonlinear waves attached to a cone. The purpose of the present paper is to extent 
the analysis to general (but smooth) body shapes. 

An interesting study of the problem has been carried out by Chou & Chu (1  97 1 ; se( 
also Chou 1972), but their technique is based on the method of characteristic para 
meters, and it consequently cannot be used to examine the truly distant flow fielc 
(Clarke 1965). 

The basic small parameter in the present theory is s, the thickness ratio of the body 
and all other small (or large) parameters are measured against it. In  fact, we shall use 
the second-order frozen theory (Landahl & Lofgren 1973) as a basis for comparison 
whenever we have to decide whether a given term is negligible or not. 

A convenient measure of the energy content of the non-equilibrium mode is the 
quantity 6a - 1, where ar0 and a, are the free-stream frozen and equilibrium 
sound speeds respectively; when the process under consideration is internal energy 
relaxation, 6 is related to the fraction of the total thermal energy which is contributed 
by the relaxing mode. An important feature of the vibrational relaxation of atmo- 
spheric oxygen and nitrogen is the smallness of 6 (e.g. Hodgson & Johannesen 1971). 
With 6 typically lying between and 10-3, this process has understandably been 
neglected during calculations of the flow field near the body. However, as was pointed 
out by Hodgson & Johannesen (1971), geometric attenuation can give rise to distur- 
bances as small as 6 (Whitham 1952), and when considering the far field, one cannot 
dismiss relaxation as a higher-order effect. 

Of the studies published in the West, the pioneering work on the small4 situation is 
due to Blythe (1969) and Ockendon & Spence (1969). Both papers deal with the piston 
problem, although Blythe includes the steady, two-dimensional, supersonic flow in the 
small-6 context. Both studies have been confined (explicitly or implicitly) to 6 = O(1) 
and 6 = O(E) ,  and it transpires (Sinai 1975; Clarke & Sinai 1977) that the comparable 
small-6 situation in the axisymmetric problem is 6 = O(s4); in contrast to previous 
studies, Clarke & Sinai (1977) analysed the complete spectrum of 6 between unity and 
its ‘small’ value. 

In  passing we note that in typical aeronautical situations 6 lies a little above the 
very small value of c4; for example, ifs = 0.05, €4 N which is an order of magnitude 
less than 6 at  sea level (it should however be emphasized that Sdecreases with altitude). 

A third important parameter is the ratio of the relaxation time 7’ to a characteristic 
flow time. It so happens that 7’ is very sensitive to the humidity (e.g. Sutherland 
1975), and typically it varies between 10-8s and 10-6s under dry and humid conditions 
respectively (the reader is referred to the pertinent comments by Hodgson & 
Johannesen 1971). 

Seeing that some of the present analysis closely follows that in I, we shall avoid 
superfluous repetitions and the reader is referred to I for preliminary details. Section 4 
deals with ord S > €4, including the near-frozen front and the near-equilibrium fully 
dispersed wave. Section 5 is devoted to ord 6 = e4, and contains discussions of numerical 
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as well as perturbation solutions of the governing equation. The paper concludes, in 
$ 6, with an analysis of the situation ord S < e4. 

Finally, we should list the limitations of the theory: account is taken of only one non- 
equilibrium process (transport phenomena are neglected), and this paper ignores the 
influences of lift, aircraft manoeuvres and atmospheric non-uniformities. 

2. Conservation equations 
The notation used in this paper is virtually identical to that in I; so we shall avoid 

repeating minor points. The dimensionless governing equations for the steady non- 
equilibrium flow of a gas in the absence of molecular transport are 

v . v p + p v . v  = 0, (2.1) 

p v . v v +  vp = 0, (2.2) 

(2.3) 

hV. Vq = Mfo(ae-q), (2.4) 

(2.51, (2.6) 

v. Vp+pa;(V.V+aV. Vq) = 0, 

h = Np, T, a), qe = ae(P, 8 ) .  

Two of the differential equations can be replaced by the important characteristic 
equations (e.g. Hayes & Probstein 1966, p. 538): 

a a D? - - - -+tan(0&pf)-  ar. 
DX ax 

The three vital parameters in our problem are given by the relations 

r = ef (x), h = TIUr/LI,  (2.9), (2.10) 

(2.11) 

Equation (2.9) describes the body shape, and we shall regard e as the basic small 
parameter; A ,  A-l and 8 will be measured against E ,  as discussed in $ 1 .  Obviously, 
the thermodynamic state of the undisturbed gas is independent of B ,  but for a given 
practical situation it will be clear how these parameters are related, and we should 
expect the solutions in different regimes of parameter space to 'match' across the 
boundaries between these regimes. 

3. Linear theory 
The first step in the analysis is the determination of the solution of the linearized 

problem; it is of intrinsic interest, and forms a basis for identifying regions of non- 
uniformity and for providing boundary conditions for the appropriate equations. The 
linear theory was first dealt with by Clarke (1961), and then by Li & Wang (1962), 
Kraiko (1966) and Sinai (1975, in terms of matched asymptotic expansions). We shall 



720 Y. L. Sinai und J .  F .  Clurke 

therefore only quote the salient results here. Briefly, one finds that perturbations in all 
six dependent variables are of the same order in the mid-field limit, i.e. 

+(x,r;  E )  = +(o)++2+(1)(x,r)+O(~4), (3.1) 

where + = (P, P ,  u, v, q 7  qJT (3.2) 

and +(O) = (P,/P,a;o, l,Mfo, 0,1, 1IT. (3.3) 

For our purposes it will suffice to quote two asymptotic results derived in I for the axial 
velocit,y perturbation ~ ( 1 ) :  

where (3.5) 

and S = nf2, = x-pf,,r, 4 = M ; , ~ / p j o ,  p = PfOSI2h. (3.6) 

Equation (3.4) evidently describes a near-frozen region where the non-equilibrium 
effects are confined to a simple exponential decay along the linearized frozen 
characteristics. 

The second result, which does not appear to have been derived previously in the 
literature, is analogous to the large-time result obtained for the piston problem (Clarke 
1965): 

(3.8) 
where B = PahS/2b2,  b = P&/$fo, 

te = z-Peor, /3:, = 1, M* = V'/a; (* = e , f ) .  

Sirovich (1968) and Chong & Sirovich (1  970) analysed the problem for a viscous 
conducting gas instead of a relaxing one; they too determined the asymptotic values 
in the far field but their papers do not contain an expression similar to (3.7). Seeing 
that the process in both cases is one of dilatation, the existence of an equivalent bulk 
viscosity leads one to suspect that some manipulation of Chong & Sirovich's integrals 
might well lead to the form (3.7). Observe that a statement equivalent to (3.7) is 

B a2+%: = aw/ar, w(&, 0) = - Mfo(2Peo)-i w(C,J, (3.9) 

where w = rt&. (3.10) 

We are now in a position to analyse the nonlinear waves, and we shall find the near- 
frozen and near-equilibrium regimes amenable to calculations. In  practice these 
domains are very far apart in physical space, and bridging can probably be achieved 
only by numerical techniques. 

In the following sections we extend the results of I to encompass general, pointed, 
smooth bodies of revolution, and this means that besides E and S the role of h has to be 
accounted for. 
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4. Intermediate 6 
The phrase ‘intermediate S’ is taken to mean 1 2 ordS > €4; the reason for the 

critical size of S being €4 will transpire in the analysis (Sinai 1975; Clarke & Sinai 1977). 
Before we continue let us define a quantity 

v = h E 4 p .  (4.1) 

4.1. Near-frozen front, ord v < 1 
Consider (3.4); if f; < 1 we may approximate W by its value for small argument, which 
leads to 

We may now follow exactly the same procedure as in I to show that the linear theory 
breaks down (in its ability to predict wavelet positions) when f ;  = O(s4h/6) with 
rS/h = O( 1) .  In other words, the re-scaled co-ordinates should be 

B = SLJhe4, R = &/A.  (4.3) 

It is unnecessary for us to solve this problem formally; for, besides the results in I, 
there is ample evidence (e.g. Jones 1964; Wegener, Chu & Klikoff 1965; Blythe 1969; 
Ryzhov 1971 ; Chou & Chu 1971) to suggest that in those regions where high frequency 
convection is important one may apply the method variously described as the PLK 
or strained co-ordinates technique (Van Dyke 1975, p. 99) or the nonlinearization 
method (Whitham 1974, p. 312). If we label the nonlinear characteristics by a and 
invoke the relation (I, p. 509) 

(i?.Lj&)a -N E2p~11’foH;ou(l), (4.4) 

where rf = @ra(Paf)/aPl,, Q’ 

we can immediately deduce that when E and R are O( 1 )  

u N M,,-E~M,,~--~S~’(O)  (a/2Pf0r)3exp ( - p r ) ,  

6 = a - E2rfOM;op~2Sn(o)  (ha/nS)t erf (p+. 
(4.5) 

(4.6) 

The analysis leading to (4.3) is vital, however, inasmuch as it indicates the permissible 
ranges of E ,  A and 6 which are implied in (4.5) and (4.6): since we stipulated that 6 < 1, 
(4.3) requires 

ord(h/S) < E - ~ .  (4.7) 

at = +Zerf(pLr,)&, (4.8) 

Using the weak shock fitting rule (Whitham 1974, p. 321), the shock locus is found 
from [see (3. 6)] 

where 1 = c2p&2np)-a rfonqos”(o) (4.10) 

and the subscript s denotes values on the frozen discontinuity. This has a bearing on 
the interesting result derived by Chou & Chu (1971), who deduced (as do we) that the 
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shape and strength of the frozen discontinuity emanating from the tip depend only 
on the tip angle. However, Chou & Chu concluded that this phenomenon occurs when 
h = O(&),  and the present theory indicates that the 'decay length' A/& is permitted to 
lie in the far greater range dictated by (4.7). 

The determination of the shock strength and of the relaxation zone behind the 
discontinuity are described in I. 

Near-frozen conditions may be expected to arise wherever the body profile is not 
sufficiently smooth, and partly dispersed shocks will therefore appear downstream of 
the bow shock; this is an interesting feature of the problem which merits further study, 
but it will not be pursued in the present paper. We confine ourselves to the conjecture 
that the characteristic-parameter (or strained co-cordinates) method, which is the one 
employed by Clarke (1965), Chou & Chu (1971) and Chou (1972), may be valid in such 
regions. 

In  conclusion we point out that when the specific process under consideration is 
vibrational relaxation, A is normally so small that the inequality (4.7) is easily satisfied. 

4.2. Near-frozen$ow, ord (he4/&) 2 1 

When ord v 2 1 we observe from (4.3) that 5 is no longer small, and we are forbidden 
to employ the small-argument asymptotic expression for W .  We could retain the 
exact W but that would lead to algebraic complexity when ordv = 1 and to large- 
argument asymptotics of W when ord v > 1. Moreover, (4.3) gives the false impression 
that the breakdown region moves away from the body as h -+ co; in fact we know that 
in the frozen limit the non-uniformity arises where 5 = ord 1 and r = orde-4 (Landahl & 
Lofgren 1973; Sinai 1975). A more satisfactory treatment can therefore be achieved by 
looking at  the latter region together with a careful assessment of the rate equation; this 
will lead to a Varley-Rogers equation (Varley & Rogers 1967) with a term proportional 
to h-l, and the Varley-Rogers equation itself will transform into the one governing 
classical frozen flow as h --f 00. 

The new co-ordinates are therefore 6 and R, where 

R = e4r. 

$($, R )  = Y(O)+ G(E)  Y(l)(E, R )  + . . ., 
Let us write 

(4.11) 

(4.12) 

where Gij = A$(c)&, (4.13) 

Sii is the Kronecker delta and A$ is the gauge function associated with the dependent 
variable 4. It is easily shown that 

A P P U V Q e  = A  = A  = A  = A  = &  (4.14) 

and the rate equation (2.4) shows that a consistent formulation can materialize only if 

Aq = e4/h. (4.15) 

In fact since ord v 2 1 ,  ord Aq < 8/13. The momentum and continuity equations show 
tha t  

(4.16) 

(2.4) yields Qr) = Q~"+O(h-') (4.17) 

JgjoR(l) = pro p) - UCl), V(1) = - pro U(1), pa) = - Mr0 iyl), 
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and the perturbation in the equilibrium value of q is 

QP = [ ( ~ q e / a P ) , I o ~ ” .  (4.18) 

In employing (2.7) it is necessary to use the following expression for the slope of the 
frozen characteristics: 

tan (e p,) = (a: - v2) [ 5 a,( V2 - u:)t - uv]-1. (4.19) 

An equation for U“)can be found by employing the entropyrelation (see I), (2.7a), (2.8) 
and (2.11) and all of (4.14)-(4.19). This yields 

K, P) u p  + 2 up + R-1 U ( 1 )  + pro( &/A@) U(1)  = 0, (4.20) 

where h; = 2~,0Jf~O/~fO* (4.21) 

Since the second-order term in the frozen far field is O(E*) (Landahl & Lofgren 1973) 
we adopt, the view t,hat, the last t.erm in (4.20) is truly negligible whenord (he4/&) 2 c4. 
The parametric solution of (4.20) is 

Rt U(l)  = H(a)exp ( -/3,,RS/2he4), (4.22) 

where the parameter 01 is determined from 

f l  = G(a)  + $H(a)  Kf(2nhe4//3,,8)terf (,8,,R6/2he4)k (4.23) 

The arbit,rary functions G and H must be chosen so as to satisfy the matching require- 
ments; these are found by substituting (4.11) in (3.4) and (3.1) and taking the limit 
E --f 0 with 6 and R fixed. It transpires that U(l) should satisfy the condition 

U(%, R 4 0 )  - - Jf,,(2P,,R)-+ Wt). (4.24) 

On comparing (4.22) with (4.24) it  is clear t,hat 

H ( a )  = - MfO(2/3,,)-~ %”-(a). (4.25) 

It is also apparent from (4.23) that since we wish to identify a with E as R 4 0, 

G(a)  = a 
and (4.23) becomes 

(4.26) 

6 = a - eT,,Mjo/37$(nh/&)* W-(a) erf (/3,,&/2h)t. (4.27) 

As expected, the solution has turned out to be a generalization of (4.4) and (4.5), 
the classical frozen result (Whitham 1952) being recovered as h --f co. The loci and 
strengths of frozen discontinuities are determined from 

(4.28) 

where 
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4.3. Equilibrium wave, ord (Ad) > s4 

The near-frozen analysis has concentrated on regions where 6r/A for ord ( A @ )  < 8, or 
~~r for ord (As4) b 6, is O( 1) .  When & / A  is large (3.7) is t,he relevant linear estimate, and 
low frequency convection is evidently important. 

We could attempt to use the linear theory to estimate the wavelet shapes; this is 
done by invoking (4.19) with the subscript f replaced by e and by following elementary 
thermodynamic manipulations: 

(2) (z 2: €2 reo N : ~  u(l)/iwto pea. (4.31) 

However, substitution of (3.7) effectively leaves us with an unwieldy integro- 
differential equation for 5, as a function of r on the curves a = constant. We shall 
therefore follow a formal and less awkward procedure as follows. If we introduce the 
general stretching E: = Ace&, R = A,r, (4.32) 

we may focus our attention on a far field by insisting that f;, < r ,  i.e. 

A, < Ace. (4.33) 

Substituting (4.32) and (4.33) in the governing equations, it  immediately follows that 

(4.34) [see (4.13)] 

(4.35) 

Turning now to the rate equation, we are at present interested in those regions of the 
far field where conditions are close to equilibrium, and we therefore insist that 

A, = A, = A, = A, = Aqe A, 

& p ( 1 )  = peo V(1) - UfV, pc’) = - M,, U(1), Jm = - pe0 UC’). 

A, = A, A; = o(A), q = q-qe. 

It then follows from (2.4) that 

(4.36) 

A, = AAAte, = [Mf(ap,/ap)s]o Ug’ .  (4.37) 

Equation (4.36) implies that all thermodynamic quantities can be evaluated at  the 
local equilibrium state with a relative order A,, i.e. 

V .  Vp+pa%(V.V+creV.Vq) N 0. (4.38) 

This equation may also be deduced from the expression given by Ryzhov (1971): 

where Q = (ah/aq),,, .  Clearly (2.7a, b )  now apply with the subscriptsf replaced by e, 
and with W = (pa2cr),V. Vq .  
Moreover, these two equations indicate that 

(4.39) 

and 

(4.40) 

i.e. Ace = A/M, A,. = A2/A8 (4.41 a) 

and A; = ha/&. (4.41 b )  
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In passing we note two facts: first, that A is as yet unknown and will be determined 
during the matching process; second, that (3.7) can be rewritten as 

(4.42) 

where ce = &,(2b-2,8dhSr)-*, A ,  = (4Br)t. (4.43) 

B = Ate/hS, R = A2r/hS. (4.44) 

In  view of all that has been said, we define the new co-ordinates by 

In order to place subsequent work in this section in perspective, let us apply the 
matching rule before we derive the governing equation. Writing the far-field series 
again as in (4.12) and (4.13), we wish to find a boundary condition on W); substituting 
(4.44) in (4.42) gives 

where c = (2b-2PeO)*. (4.46) 

The assumption ord (AS) > A is in fact implicit in (4.44) because in the limit h -+ 0 
breakdown occurs where te = O( 1) and T = O(e-*), in the same way that an analogous 
breakdown occurs in the frozen limit (see Q 4.1). We therefore need the asymptotic 
behaviour of W ( x )  as x -+ 03: 

(4.47) 

It is not unusual for W to decay faster than x-% if the body is finite; for example, if 
f ( 1 )  = 0 then S(1) = 0 = S’(1). Clearly, W - xn. with n < - 4 if the body is finite, but 
in order to include semi-infinite bodies in our analysis, let us write 

W ( x  -+ 00) N xn (4.48) 

on the understanding that n < 8 (8 corresponds to the cone, and we cannot allow the 
body to grow faster than the cone as x --f 00). Substituting (4.48) in (4.45) we find that 
i f n  > 0 A = h S [ ~ ~ ( h S ) - * ] l / ~ .  (4.49) 

However, when the body is finite, so that S N ( x )  vanishes when x > 1,  we find that 
A = AS/&; seeing that AS can be O ( l ) ,  this result is patently inadmissible, and the 
matching rule indicates that the linear theory is valid in the present region (evidently 
the diffusivity B is sufficiently large for the nonlinear effects to be relatively unim- 
portant). These conclusions are analogous to Blythe’s (1969) deductions for the piston 
problem, although he did not consider the implications of A and S taking on extreme 
values in the ‘intermediate S’ context, except for allowing h to be large. Observe that 
since 0 < n < ij, 1 - 1/2n < 0 and (4.44) and (4.49) still apply ash --f 03; this domain of 
non-uniformity is simply shifted away from the body as h increases, although the 
near-frozen results of Q 4.2 then apply in the ‘usual’ far field. 

Using equation (8) of I ,  the perturbation to the equilibrium sound speed is found to be 

where 

(4.50) 

(4.51) 
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The equilibrium form of (4.19) then shows that 
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(4.52) 

where K* = M ~ w : o ( r , o p , - , z ~ ~ -  1 f 1 )  A. (4.53) 

Invoking (2.7a), (4.35), (4.37) and (4.52) we finally derive an axisymmetric version 
of Burgers' equation: 

(4.54) 

where K ,  = (4.55) 

Equation (4.45) provides a boundary condition; U(l) should behave like 

(4.56) 

as R &  0 with ER-t  fixed (0  < n < 8). 
As far as can be ascertained, no exact analytical solution of the axisymmetric 

Burgers equation has yet been published. Parker (1975) has applied the Cole-Hopf 
transformation (e.g. Lighthill 1956) to a general class of equations and obtained a 
spatially dependent diffusivity multiplying a logarithmic term (Leibovich & Seebass 
1974, p. 124); subsequent linearization of this term allowed him to obtain closed-form 
solutions. The need to match U(1) with the mid-field result unfortunately invalidates 
this procedure in the present case; in fact, Parker's solution is apparently unable to 
satisfy a singular boundary condition involving terms like R-m, m > 0 (Sinai 1975). 

Mention should also be made of similarity solutions, but we shall postpone such 
a discussion until the next section, where it will be more relevant. 

Let us digress on the matching procedure [cf. (4.45)]. Specifically, we shall try to 
answer the following question: why does the diffusivity Ad have a critical size O(e4)? 
It has already been shown that, when ord (A&) is greater than the initially unknown A, 
A turns out to depend on the body shape. Now consider a situation where 

ord(h8) < A. 

Here we need to use the asymptotic behaviour of W for small argument, namely 
W ( x )  - xi, and it transpires that A = s4 and hence ord (ha) < A if ord (Ad) < e4. These 
thoughts are further consolidated by (4.49), for it confirms that ord(hS) > A when 
ord (A6)  > e4 provided only that n > 0. In  addition to these arguments we know (as has 
been mentioned before) that when h = 0 breakdown occurs where te = ord 1 and 
r = ords-4 [consult the pertinent comments above (4.1 l)]. 

4.4. Equilibrium wave, ord (Ad) < e4 

Let us define the quantity (4.57) 

In  view of the aforementioned, a study of the ord (v*) < 1 situation will be facilitated 
by examining the region in which 6, = O( 1) and r = O(c4) ,  i.e. the new independent 
variables should be f;, and R, where 

R = s4r. (4.58) 
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(4.59) 

and this time the rate equation indicates that 

A,, = e4, A; = he'. (4.60) 

Observe that since ord(h8) < e4, ord(A,) < e8/6.  The subsequent analysis is almost 
identical to that in the previous section, and U(l) is found to satisfy an equation which 
is barely (but usefully) different from (4.54): 

K ,  U(')Ug)+ 2Ug) + R-lU(1) = (h8/e4)P&'/3j0 UKie. (4.61) 

Again, the diffusive term on the right-hand side is deemed negligible when 

ord(h8/s4) < e4. 

The reasons why (4.61) is considered more useful than (4.54) are twofold. First, (4.61) 
is susceptible to perturbation techniques when ord v* < 1, and this inequality is norm- 
ally satisfiedin the context of vibrational relaxation in the atmosphere. Second, it tran- 
spires that the boundary condition on (4.61) is a much simpler one than (4.56). In fact, 
the matching condition corresponds to classical equilibrium requirements, as can be 
verified by direct manipulations or by invoking the properties of the Dirac delta 
function; hence 

U(')(te, R 4 0) N - Jf,o(2PeoR)-' w(Ce)* (4.62) 

Write w = RtU(1). (4.63) 

Then 

where 

(4.64) 

(4.65) 

Let us find perturbation solutions to (4.64) in the practically relevant case ord v* c 1 
(Hodgson & Johannesen 1971). Equation (4.61) is immediately recognized as a 
singular perturbation problem (Cole 1968; Murray 1968; Van Dyke 1975); initially we 
seek an ' outer ' solution of the form 

w = w(0) +p*d') + o(p*) (4.66) 

and we find, with the aid of (4.62), that 

do) = F(P) = -Jffo(2Peo)-'w(P), t e  = P+KeF(P)R', (4.67) 

where T = 1 +K,F'(P)R# (a&/aP)R.  (4.69) 

The breakdown is highlighted in (4.68); T vanishes on the envelopes of the charac- 
teristics P = constant, i.e. breakdown occurs near the shock waves. Be that as it may, 
we can locate the shock waves (with an error O(p*))  by the standard techniques, and 
values of w ahead of and behind these equilibrium shocks, denoted by W, and WE, will 
be required during the 'inner' calculation for the shocks' structures. Writing the inner 
expansion as 

~ ( 7 ,  R )  = W ( o ) + p * W ( l ) + ~ ( p * ) ,  (4.70) 

where T = r& - @(@J/P* (4.71) 
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and O(R) is the value of te along the shock calculated from (4.67), we derive an equation 
which has appeared in similar form several times in the literature: 

Z e  ' K  R-* W(O) W(O) 'I - ( d B / d R )  W:) - W$$ = 0. (4.72) 

Integrating twice and applying the conditions W(O) = W, and W, = 0 as 9 -+ - co and 
W(0) = WR and = 0 as 7 -+ 00, we find that 

or 

(4.73) 

(4.74u) 

(4.74 b )  

where H is an undetermined function (assumed to be O( 1)). Equation (4.73) is no more 
than the 'mean wavelet direction' condition for weak shocks (e.g. Whitham 1952), and 
(4.74a, b )  correspond to the classical, Taylor, diffusion-resisted structure (e.g. Light- 
hill 1956, p. 287), with the shock thickness (defined in the usual way) proportional to a 
diffusivity and inversely proportional to the velocity change across it. In  fact, com- 
parison of (4.74 b )  with the classical result indicates that the dimensional diffusivity 

(4.75) 
6* is given by 6* = U'L'hS/3jo/M:o = riU'2,!$oS/M~o = r;8u$,/a;,. 

It should be noted that in any compression wave W ,  > W(O) > W,. At sufficiently large 
R the viscous region will engulf the whole Mach zone, as pointed out by Chong & 
Sirovich (1973; see also Sanchez-Palencia-Hubert 1976). If we denote the dimensional 
widths of the shock and Mach zones by 6; and 6; respectively, we know from previous 
considerations and the classical Whitham theory that at  sufficiently large distances 

6; - S*(r'/L')q€2U', s:, N €L'(T'/L')*. (4.76) 

Like Chong & Sirovich we declare that the viscous and inviscid zones may not be 
regarded as 'separate' for radii larger than that at  which 6; = O(sS;), i.e. when 

r'/L' = O(e8R&), (4.77) 

where (in our case) RE is a 'relaxation Reynolds number' given by 

RR = U'L'/S* = M$//3&hS. (4.78) 

It should be observed that when RR is not larger than O(E-~) the critical r'/L' is not 
large; this may well be related to the comments made a t  the end of 94.3, and 
(4.77) constitutes another pointer at  €4 as the critical order of magnitude of the 
diffusivity. These thoughts are related to the 'lobe Reynolds number' discussed by 
Lighthill (1956, p. 333) and Leibovich & Seebass (1974, p. 120). 

We can assess the importance of relaxation in the present region by comparing the 
equivalent bulk (kinematic) viscosity 6* with the shear viscosity v, of air. Let us assume 
the following typical values for the parameters: 

a,, = 300m/s, 8 = 10-4, v, = 10-4m2/s. 

Substituting in (4.75) gives 6*/v, N 10%; (4.79) 



Wave system attached to u slender body in a gas stream 729 

with 7; expressed in seconds. Since (e.g. Hodgson & Johannesen 1971; Sutherland 
1975) 7; varies typically in the range 10-3s (dry conditions) to 10-ss (humid condi- 
tions), we see that in some atmospheric environments the equivalent bulk viscosity 
can overwhelm the shear viscosity (Lighthill 1956, p. 281); under such circumstances 
omission of 6* leads to gross under-estimation of the shock rise times. These results 
provide the information we sought regarding the detailed structure of the N-wave. 

Let us now turn to the matter of similarity solutions of (4.64). Sinai (1976) found 
a body satisfying the similitude requirements in terms of the grouping Ce R-4, but that 
calculation was carried out in the equilibrium limit h --+ 0 with 6 small, i.e. ord 6 = s4. 
However, the matching condition (4.62) is identical to the one implemented by Sinai, 
and we therefore conclude that the solution discussed in that paper is relevant under 
the present circumstances as well, due care being taken to account for the different 
coefficients in Burgers’ equation (these differences are negligible when 6 is small). 

5. Small 6 
The phrase ‘small 6’ implies that ord 6 = s4; under such circumstances the source 

term in (2.7) undergoes a vital change in character, resulting in an equation which is 
less tractable than those encountered so far. Before continuing, let us define 

A = 6/s4, a = 818. (5.1) 

5.1. The case ordh = 1 

It was pointed out in I that when &is as small as O(s4) the mid-field result is the familiar 
frozen estimate, 

(5.2) 

provided only that 5 < r .  Breakdown therefore again occurs where g = O( i), r = O(s-4), 
and the co-ordinates defined in $4.2 apply directly, as do (4.14) and (4.16). Unlike 
the previous cases, the thermodynamic state in the far field is neither nearly frozen 
nor close to equilibrium, and according to (2.4) and (2.11) 

U ( l )  - - Jff,(2Pf,r)-i W5), 

Aq = c4, (5.3) 

(5.4) h f p  + & ( I )  = - (p~06/Mf,(r,) U(1). 

Subsequent calculations follow those in 9 4.2 very closely, and ( 2 . 7 ~ )  leads to 

Kf U(l)U(l)+ 5 2U$)+ R-lU(1) = (2Mf,~0/pf0~4) Qp). (5.5) 

(ha/a5+1)PfU( l )+APf ,U~’  = 0, (5.6) 

Pf = Kf U(’)a/af; + 2 a/aR + R-l. 

Equations (5.4) and (5.5) may be combined to yield 

where Pf is the familiar differential operator 

(5.7) 

Equation (5 .6)  describes an axially symmetric flow which is analogous to the 
small-energy problems considered by Blythe (1969), Ockendon & Spence (1969), 
Ryzhov (1971) and Rudenko et al. (1974). Unfortunately no analytical solutions of 
these equations are known as yet. Blythe ( 1  969) presented numerical solutions of the 
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smal1-S (piston problem) equation for the expansive case; in our case the front is 
essentialIy compressive, but we shall postpone our discussion of numerical solutions of 
(5 .6)  until a subsequent section. A significant contribution to an understanding of the 
general features of the small-bequation was made by Blythe, who studied the equation's 
characteristic form. Clarke & Sinai (1977) used certain features of the same technique, 
although the changed geometry alters the details somewhat, and the calculation set 
out below hardly differs from the corresponding analysis in that paper (we confine our 
attention to the front, or bow, shock). 

First, transforming the variables via 

X = [ / A ,  Y = (AflfoR/2h)J,  w = Kf(R/2A/3foh)i  UQ), (5.8) 

(5.9) 

we find that w satisfies the following parameter-free equation: 

@/ax + 1 ) ( 2wwx + wp) + 2 Yu,, = 0. 

This equation's characteristics are Y = constant (which approximate the streamlines) 
and a = constant (which approximate the nonlinear frozen Mach wavelets), where 

( a x p Y ) ,  = 2w. (5.10) 

Application of what may be called the Von Mises transformation, with the aid of (5 .  l o ) ,  
leads to an equation for X as a function of a and Y :  

X a , , + X , X , , + 2 Y X , ,  = 0. 

If we identify a with 6 on Y = 0, the integral of (5.10) is 

(5.11) 

(5.12) 

and the matching condition (4.24), together with (5 .8 )  and (5.10), translates into the 
following boundary condition : 

X,(a ,  0) = - JKh-4 W(a), (5.13) 

where K = 2Mf0Kf/AilB,,. (5.14) 

Furthermore, (5.12) implies that 

X ( a  < 0, Yf = a/h,  X ( a  > 0 , O )  = a/h. (5.15), (5.16) 

For a small and positive, X may be written as a series: 
m x = CI a i n X , ( Y ) ,  

% = I  
from which we find that 

(5.17) 

6 = - $(Aa/r)d KS"(0) erf Y + a [ l  +A( Y ) ] ,  (5.18) 

where S"(0) is the limit of S"(X) as x decreases to zero from above, and 

The reader is referred to I for the pertinent comments regarding the behaviour of the 
head shock (we may assume, without loss of generality, that S"(0) = 277). 
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The analysis which we have completed is admittedly of a limited nature; in addition 
to the restrictions on a, we have not described the rear shock. However, the problem 
is a complex one, and we shall now content outse.lves with, first, a look at  the behaviour 
for ext,reme A, and second, numerical solutions of (5.6). 

5.2. The cage ordh < 1 
First, it is to be observed that, in terms of the linearized equilibrium characteristics te, 
(5.6) reads 

(h&+ 1) [ K f  U(')UE)+2Ug)+ R-lUcl)] = hApfoU&.e+0(6). (5.20) 

Note too that, since ord 6 = e4, K ,  = K ,  to within our order of accuracy [see (4.21) and 
(4.55)]. 

It has already been pointed out that h is normally small; in their studies of this 
situation Blythe (1969), Ockendon & Spence (1969) and Rudenko et al. (1974) 'iterated' 
on t,heir analogues of (5 .6)  to obtain Burgers' equation 

K f  U(')U:f;) + 2 U g )  + R-'U(') = U p f o  U:f;ie + O(h2), (5.21) 

which is identical to (4.61) to O(6).  However, it was pointed out by Sinai (1975) and 
Crighton (1 975, private communication) that Burgers' equation is invalid in certain 
regimes; in fact, (5.20) is a typical singular perturbation problem, the iterated equation 
yielding the 'outer' solution. 

In the notation of $4.4, (5.20) can be written as 

( A  a/a& + 1) (K;R-$wwte + wR) = &pfoV*Wtpte. (5.22) 

It quickly follows t,hat the outer solution is identical to (4.66), (4.67) and (4.68), with 

(5.23) 

In  terms of the variables defined in (4.70) and (4.71), we find that the first inner term 
is governed by 

de ae K'R-~W(O)W(O'-- Wp'+iK;R-JW(O)*-- W(O) = $APfoWp)+G(R). (5.24) 
f dR dR 

Applying the upstream and downstream matching conditions, we find that (see 
0 4.4) 

(5.25) 1 dB/dR = $K;R-)(W,+ WR), 
G(R)  = - &K;R-*W,W,. 

An additional integration yields 

(l-D)ln[W,-W(o)]+(l+D)ln[W(o)-W,] = - r + H ( R ) ,  (5.26) 

where D = 2A/3foRt/Kf(W,- W,). (5.27) 

Relations like (5.26) have appeared numerous times in the literature; specifically, 
the wave is partly dispersed wherever R-*(W,- W,) is sufficiently large for D to be less 
than one. Conversely, the wave is fully dispersed wherever D > 1. 

The interesting fact has thus emerged that in the near-equilibrium limit the shock 
waves can be partly dispersed when 6 is sufficiently small, and the concept of an 
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equivalent bulk viscosity can be spurious. Moreover, this critical size of S depends on 
t,he geometry, being O(s)  and O(e4) for planar and axisymmetric configurations 
respectively. 

Whilst D can be determined formally for any particular body shape, we can provide 
an estimate of the position, on the front shock of all bodies, a t  which D = 1. If we 
assume that this position is sufficiently far from the body for the r-2 decay (Whitham 
1952) to hold in the vicinity of this position then we may estimate the value of R at the 
critical point by 

(5.28) 

where (5.29) 

and a, is the first zero of W in a > 0. Normally W, is rather insensitive to the body 
shape, and for the purpose of illustration we assume a value which actually holds for 
a semi-infinite body with a parabolic nose, namely W, 2: 0.2. R, is quite sensitive to 
the Mach number, and if we choose Mf, = 2.0, we find that D = 1 when r is approxi- 
mately O . ~ S - ~  body lengths; at  larger radii the shock is fully dispersed, and despite 
the fact that ord 6 = e4 the bulk viscosity (which can only be used where D 9 1) may 
still be comparatively large, as discussed in $ 4.4. 

5.3. The case ordh > 1 

In  the near-frozen limit h -+ co we may iterate on (5.6): 

u(l))/aE + h - y f 0 A  u p  = O(h--2). (5.30) 

Asingle integration leadsexactly to (4.20), and the results of $4.2 apply directly, 

5.4 .  Numerical solutions 
In  view of the complexity of the problem when there are no small (or large) parameters, 
numerical calculations have been carried out for a particular body shape. The shape 
which was chosen was a semi-infinite cylinder with a parabolic nose; referring to (2.9), 

Figure 1 presents W for this particular body. 
The matter of multi-valuedness is obviously dealt with most easily with a knowledge 

of the shape of the characteristics, and it was felt (with justification, we feel in hind- 
sight) that the shock fitting would be best implemented via a direct solution of (5.11) 
with (5.10) providing values for the primitive variables (e.g. pressure). In  fact, the 
numerical calculations were performed not on (5.1 l ) ,  but on the following equivalent 
equation: 

2hRZa,,+ (2RZ,, + 2,) [Z, + 1 - kW‘(a) Rf] + (A&$ + A )  Z,, = tkW’(a) Rt, 
(5.31) 

where f ;  = Z+a-kW(a)R$ ,  (5.32) 

(5.33) 
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FIGURE 1. W(m) for a semi-infinite cylinder with a parabolic nose. 

FIQURE 2. Numerical solutions of the small-8, parabolic-nose problem: a typical view of E(a, R) 
from the octant a < 0, R < 0,t < 0 (the surface is viewed from underneath, approximately in 
the direction of the arrow msrked a in figure 3). 

Equation (5.31) is derived by transforming (5.6) with the aid of (5.34) in a manner 
exactly equivalent to the derivation of (5.11) from (5.9). Equation (5.31) was solved 
instead of (5.11) simply because (5.11) was found after the computations had been 
completed. Despite the simpler structure of (5.11) we are in no doubt that differences 
between numerical solutions of (5.11) and (5.31) would be utterly negligible (except, 
possibly, at  large a and R) for the following reason: our explicit finite-difference 
scheme, which uses a six-star molecule, employs (5.31) to express the value of 6 a t  one 
point in trhe a, R plane in terms of the values of at the other five points. Hence the 
only difference between the algorithms from the two equations would be this final 
expression for 6 at  the sixth point; numerical answers would therefore be virtually 
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5 

FIQURE 3. A numerical solution of the small-S equation for the parabolic nose, depicting E; VS. u 
for fixed R. The finite-difference grid in the a, R plane has an expanding step size and successive 
prves  in this figure do not correspond to identical changes in R.  The relevant parameters are 
s = EI, A = 1.0, Mfo = 2.0, rfo = 1.2. 

identical (the computations were carried out in double precision anyway), except 
perhaps for a build-up of cumulative errors at large values of a and R. Note that the 
present analogue of (5.1 1) is 

2 YXapp + Xa(2YX,, + X,) + (2 Y + 1 )  x,, = 0. 

Be that as it may, (5.32) constitutes a ‘subtraction of the singularity’ (Ames 1965, 
p. 411) and it leads to homogeneous boundary conditions on 2: 

Z(0, R) = 0 = Z(a, 0 ) ,  Z,(a, 0) = 0. (5.35) 

Subject to these conditions, (5.31) was solved numerically using first-order explicit 
k i t e  differences, to obtain the values of 6 in the quadrant a > 0, R > 0. The solution 
surface is rather complicated in shape, and for this reason we include figure 2, in which 
the surface is viewed from the octant a < 0, R < 0,E < 0. 

Unfortunately, the computational algorithm possesses an instability which mani- 
fests itself when h is approximately less than 0.3, but we can turn to 55.2 for 
analytical solutions when h is small. 

Figure 3 exhibits solution curves 6 vs. a (0 < a < 1.5) for fixed R in the range 0-5.0. 
There are several striking features of the curves, but it should be pointed out first that 
in frozen flow the values of 5 increase monotonically with R for fixed a; in fact, E is then 
proportional to Ri (Whitham 1952). Moreover, in frozen flow 6 = a a t  any value of a 
which is a zero of W(a), so t h a t  in such circumst,ances each and every curve, regardless 
of the value of R, would pass through the point marked A in figure 3. 

It is apparent a t  a glance that the behaviour is not monotonic with respect to R, and 
as R increases the curves do not all pass through the point A .  The evolution of the kink 
near the front is illustrated clearly in figure 2. We have convincing explanations for 
these phenomena, but we shall postpone further discussion of the kink until we deal 
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D 

FIGURE 4. A typical solution curve near the wave front; small R. 

1 

FIGURE 5. A typical solution curve near the wave front; larger R. 

with the shock fitting. Meanwhile, we observe [see (5.34)] that perturbations vanish 
wherever (ac/aR), = 0. For the present body W possesses a zero at  a 21 0.69, and in 
frozen flow the characteristic a = 0.69 would be a straight line < = constant which 
would reach infinity and which would constitute the ' centre' of the wave along which 
the pressure is just the ambient pressure. Evidently, in the presence of the non- 
equilibrium effects the characteristic a = 0.69 is no longer straight, and in fact 
figure 3 shows that the centre of the wave tilts backwards (i.e. in the direction of 
increasing c )  towards the equilibrium direction as R increases. 

Turning now to the front region, figures 4 and 5 present typical shapes of the solution 
as ws. a for small R (where conditions are frozen) and larger R (where a lack of equi- 
librium prevails). In figure 4 it is seen that in a certain range of 6 the solution is triple- 
valued (this is a familiar phenomenon in gasdynamics). In figure 5 the situation is more 
complicated, in so far as jive characteristics (corresponding to the points marked 
A ,  B,  C, D and E )  pass through the point in physical space given by en, R,. The 
envelopes of the characteristics, defined by (ag/aa), = 0, are correspondingly complex, 
being four in number (as opposed to two in frozen flow) and corresponding to the 
points marked F ,  G ,  H and I .  The evolution of the envelopes in physical space is 
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x 

FIGURE 6 .  A sketch of a front envelope in a relaxing gas. 

illustrated in figure 6. The ‘splitting’ of the front frozen branch of the envelope into 
the branches marked I and H corresponds to a flattening of the curve in the vicinity of 
the point marked D in figure 4. 

The multi-valuedness obviously has to be rectified through the insertion of a shock 
(presently ‘shock’ will denote the discontinuous part of a wave); although an algorithm 
for fitting the rear shock has been formulated in principle, it has been found to be too 
expensive in computer time and it has therefore not been incorporated into the 
computer program. Whilst information about the complete wave profile is attractive, 
the present calculations (which are new in themselves) provide us with important 
quantitative details ahead of the centre of the wave (the centre being the position at 
which the perturbations vanish). In  passing we note that in the present context the 
asymptotic wave profile is evidently not symmetrical about its centre, unlike frozen 
flow. The fitting technique, which uses an iterative interpolation, is based on the ‘mean 
wavelet direction’ property of weak waves (e.g. Liepmann & Roshko 1957, p. 93; 
Whitham 1952), which in our notation reads 

2+ a. . (5.36) 

Having determined the shock path up to a certain value of R, a sensible guess is made 
at the shock position at a larger R, and numerical interpolation is used to express 
the right-hand side of (5.36) as a polynomial in R. An integration of (5.36) then yields 
an improved estimate of the shock position, and the process is repeated until an error 
criterion is satisfied. The shock is started off by fitting a frozen shock (Whitham 1952) 
over the first step. 

It is obvious, on physical grounds, that the ‘outermost’ solutions must be chosen 
during the fitting, so that if the dotted line represents the determined shock position 
at  the particular R in figures 4 and 5 ,  the discontinuous jumps are represented by AC 
and A E  in the two figures. 

It is important to note that each characteristic is cut off when it meets the shock, and 
it will not appear at  larger values of R. Consequently, the characteristics associated 



Wave system attached to a slender body in a gas stream 737 

FIGURE 7. Typical front- and rear-shock loci in the computational plane, illustrating 
the discarded solutions. S,, front shock; S,, rear shock; ////, discarded solutions. 

4 
, E  

R = 2.1132 

\ \ R=0.1534 
R =0.0314 

- 0.75 

FIGURE 8. The pressure profiles across the wave, excluding the rear shock. Parameters 
as for figure 30. 

with the kinks are truncated relatively close to the body, and the complicated envelope 
disappears as the shock is fitted, as it should; these points are illustrated in figure 7. 

Figure 8 presents the pressure distributions across the wave (excluding the tail); 
attenuation distorts the profiles away from the customary N-shape. Finally, figures 9 
and 10 provide the shock loci and strengths for various values of the parameters, and 
they illustrate the overall dissipative influences of the non-equilibrium phenomenon. 

In  view of all these ramifications, it  now becomes clear why a kink develops near the 
front. We know from (5.34) that, as the perturbations decrease, the spacing between 

F L M  84 25 
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0 1 4 2.0 3.0 4.0 

R 

FIGURE 9. Front-shock co-ordinates for different values of 81s and h. The graph includes a 
comparison, for h = 10, between the numerical results and the prediction of (4.28) and (4.29). 
...... , fully frozen (Whitham); --- , approximat? analytical, h = 10-0, A = >.O. Numerical: 
0, singul2rity not removed; --, h = 10.0, A = 1.0; ----, h = 1.0, A = 1.0; ---, 
h = 1.0, A = 10.0. 

2.0 

? I;O , 2;O 3;0 I 4;O , 

\ 

---------- 
-4.01 '\---- 

-6.0 
FIGURE 10. Front-shock strengths for different values 

of S/@ and A. Curves as in figure 9. 

successive curves on the w.9. a graph decreases as well. Consequently, the only way in 
which the strength of the discontinuity can be made to diminish over and above the 
usual geometric factor is through the appearance of the kinks;  these lead to a reduction 
in the spacing between successive curves in the region in figure 3 through which the 
shock passes. It should be reiterated that the curves in figure 3 do noi correspond to 
equal intervals in R, because the grid is an expanding one. 

Another interesting point is that, since A( Y )  > 0, the non-monotonicity in 6 with 
respect to R is hinted at by (5.18). 
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6. Very small S 
Despite the fact that under normal aeronautical circumstances E is very small (0.05 

typically), we include a discussion of the situation ord S < e4 for the sake of complete- 
ness. This section encompasses the flow about bodies which are 'not so slender', such 
as bullets. 

Turning to (5.6), it  is apparent that when A is small we can simply obtain a regular 
perturbation solution. Let us first rewrite (5.6) as follows: 

where w = RiUcl), &'= aPf0A. (6.2) 

w = d O ) + & ' d ' ) +  ..., (6.3) 

(6.4) 

(6.5) 

Transforming the independent variables from < and R to 01 and R with the aid of 
(6.4) gives 

where 

After two integrations of (6.6) it  transpires that 

If we seek a solution [subject to (4.24)] of the form 

we find that do) is of course the classical frozen solution [Ic is defined in (5.33)] 

d o )  = - Mfo(2/3,,)-i 9+p(~ ) ,  [ ( E ,  R )  = 01 - kW(01) Ra 

( A  a/a[  + 1) {wQ) + pf ~ - 4 [ d o ) ~ p  + ~f%Uo)]} +up = 0. 

(spa + T / A )  [wp + arc, R - ~ T Z U : ) ~ ( ~  = - A - ~ ~ J O )  a ,  

T(a ,  R)  = 1 - k W ( 0 1 )  Ri = (a[/aa),. 

and that zdl) is governed by 

(6.6) 

(6.7) 

where 

In  accordance with our previous considerations, we declare that the non-equilibrium 
effects are relegated to second-order terms when ord A < e4, i.e. when ord S < e8. 

7. Conclusions 
This paper describes the far-field wave behaviour for complete spectra of E ,  S and h 

by distinguishing four separate levels of S and thereafter allowing ord h to be less than 
one, equal to one or greater than one. 

When 1 2 ordS > $, the wave head emanating from the tip is a frozen Rankine- 
Hugoniot shock wherever r 5 h/S. If ord (hs4/S) < 1, which is true in most aero- 
nautical circumstances, the behaviour of this shock, given by (4.9), is independent of 
the overall shape of the body, being related solely to the tip angle. When ord (As4/& 2 1 
a near-frozen field, including the rear shock, is described by (4.22), (4.28) and (4.29); 
again, frozen shocks extend as far as r 5 h/S. Sufficiently far from the body the 
shock waves will inevit'ably be fully dispersed. In fact, if the body is finite, linear 

25-2  
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theory holds when ord (Ad)  > e4; if ord (AS)  < €4 we find that the shocks are structured 
by an equivalent bulk viscosity [see (4.75)] which may overwhelm the shear viscosity 
when the humidity is low. Clearly, the importance of the influence of the non- 
equilibrium process (as opposed to transport phenomena) on the shock waves’ structure 
oan be assessed simply by comparing the relevant diffusivities. 

When ordS = e4 the behaviour of the frozen bow shock is more complex, but it is 
described by (4.9) when r < h c 4 ;  details of the initial departure from this law may be 
found in I. Perturbation solutions have been obtained for small and large A :  when 
ordA < 1 it transpires that an equivalent bulk viscosity may not be used in certain 
domains, and for a given body one can determine the critical distance at which the 
wave structures change from the partly to the fully dispersed type. A universal 
approximation (5.28) insensitive to the overall shape of most aircraft but quite 
sensitive to the Mach number is also supplied for this position on the bow shock. If the 
body shape is such that a shock wave forms away from the body, the wave can evolve 
through stages of full, partial and then full dispersal. Even when ordS = e4, the 
equivalent bulk viscosity, where it is valid, can be larger than the shear viscosity. When 
ord h > 1, we recover the near-frozen solution of $4.2.  Numerical solutions have 
also been found, in order to cope with the situation h = ord 1 = S/e4. These calcula- 
tions were performed for a semi-infinite cylinder with a parabolic nose, and the bow 
shock has been fitted. When h is large, the computations compare favourably with the 
near-frozen perturbation solution. 

When e8 < ord S < e4, a perturbation solution is available; it  allows us to find the 
small correction to a fully frozen flow. This result could be applicable to bodies which 
are not so slender, such as bullets. 

When ord 13 < €8, the first-order solution is unequivocally the one from classical 
frozen theory. 

Some of the material in this (as well as the companion) paper was presented at the 
Seventh International Symposium on Nonlinear Acoustics, Virginia Polytechnic 
Institute and State University, Blacksburg, Virginia, U.S.A., 19-21 August 1976. 
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